II Semester M.Sc. Degree Examination, June/July 2014
 (NS) (2006 Scheme)
 MATHEMATICS
 M-201 : Algebra - II

Time: 3 Hours
Max. Marks : 80

Instructions: 1) Answer any five questions choosing atleast two from each Part.
 2) Each question carryequal marks.

PART - A

1. a) Define an algebraic element in an extension of a field. Let K be an extension of a field F. Prove that an element ' a ' of K is algebraic over F if and only if $F(a)$ is a finite extension of F.
b) Prove that every finite extension K of a field Fis algebraic and may be obtained from F by the adjunction of finitely many algebraic elements.
c) Let $a=\sqrt{2}, b=\sqrt[4]{2}$, where R is an extension of Q. Verify that $a+b$ and $a b$ are algebraic of degree atmost (deg a) (deg b).

4
2. a) Let $f(x) \in F[x]$ be degree $n \geq 1$. Then prove that there is an extension E of F of
degree atmost n ! in which $f(x)$ has n-roots.
b) Define splitting field of a polynomial over a field F. Determine the splitting field of $x^{3}-2$ over the field Q.
c) If P is a prime number, prove that the splitting field over F, the field of rationals, of the polynomial $x^{P}-1$ is of degree $P-1$.
3. a) If the number α satisfies an irreducible polynomial of degree k over the field of rational numbers and k is not a power of 2 , then show that α is not a constructible number.
b) Prove that a polynomial $f(x) \in F[x]$ has a multiple root if and only if $f(x)$ and $f^{\prime}(x)$ have a non-trivial common factor.
c) Prove that any finite extension of a field F of characteristic 0 is a simple extension.
4. State and prove the fundamental theorem of Galois theory. 16

PART - B

5. a) Let V be finite-dimensional vector space over F , prove that $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ is invertible if and only if the constant term of the minimal polynomial for T is not 0 .
b) If V is finite-dimensional vector space over F and if $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ is right-invertible, then show that T is invertible.
c) If V is a finite-dimensional vector space over F and $T, S \in A(V)$ with S as regular, prove that both T and STS^{-1} have the same minimal polynomial over F.
6. a) Let V be a finite-dimensional vector space over a field F. If $\lambda \in F$ is an eigen value of $T \in A(V)$ and if $f(x) \in F[x]$, prove that $f(\lambda)$ is an eigen value of $f(T) \in A(V)$.
b) If V is n-dimensional vector space over F and if $T \in A(V)$ has the matrix $m_{1}(T)$ in the basis $\left\{v_{1}, V_{2}, \ldots, v_{n}\right\}$ and the matrix $m_{2}(T)$ in the basis $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ of $V(F)$, then prove that there is a matrix C in F_{n} such that $\mathrm{m}_{2}(\mathrm{~T})=\mathrm{C} \mathrm{m}_{1}(\mathrm{~T}) \mathrm{C}^{-1}$.
c) If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ in F are distinct characteristic roots of $T \in A(V)$ and if v_{1}, v_{2}, \ldots, v_{k} are characteristic vectors of T belonging to $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, respectively, then prove that $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ are linearly independent.
7. a) Let V be a finite-dimensional vector space over a field F. If $T \in A(V)$ is nilpotent of index r, prove that there exists a vector v in V such that $\{\mathrm{v}, \mathrm{T}(\mathrm{v})$, ..., $\mathrm{T}^{\mathrm{r}-1}(\mathrm{v})$) is linearly independent over F .
b) If $T \in A(V)$ has all its characteristic roots in F, prove that there is a basis of V in which the matrix of T is triangular.
c) Let $T \in A_{F}(V)$ has all its distinct characteristic roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ in F. Then show that there is a basis of V in which the matrix of T is of the form
$\left[\begin{array}{ccccc}\mathrm{J}_{1} & 0 & \cdots & \cdots & 0 \\ 0 & \mathrm{~J}_{2} & 0 & \cdots & 0 \\ \vdots & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \cdots & \cdots & \cdots \\ 0 & 0 & \ldots & \cdots & \mathrm{~J}_{k}\end{array}\right]$, where $\mathrm{J}_{\mathrm{i}}=\left[\begin{array}{cccc}\mathrm{B}_{\mathrm{i} 1} & 0 & \ldots & 0 \\ 0 & \mathrm{~B}_{\mathrm{i} 2} & \ldots & 0 \\ \cdots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & \mathrm{~B}_{\mathrm{ir}}\end{array}\right]_{\mathrm{i}}$ where $B_{i 1}, B_{i 2}, \ldots, B_{i_{i}}$ are basic Jordan blocks belonging to x_{i}.
8. a) Let V be a finite-dimensional complex inner product space. If $T \in A(V)$ is such that $\langle\mathrm{T}(\mathrm{V}) ; \mathrm{V}\rangle=0$ for each $\mathrm{v} \in \mathrm{V}$, then prove that $\mathrm{T}=0$.
b) If T is unitary and if λ is a characteristic root of T, then prove that $|\lambda|=1$.
c) State and prove Sylvester's law of inertia for real quadratic forms.
