II Semester M.Sc. Degree Examination, June/July 2014 (NS) (2006 Scheme) MATHEMATICS M-201 : Algebra – II

Time : 3 Hours

Instructions: 1) Answer **any five** questions choosing atleast **two** from **each** Part.

2) Each question carry equal marks.

PART-A

1.	a)	Define an algebraic element in an extension of a field. Let K be an extension of a field F. Prove that an element 'a' of K is algebraic over F if and only if $F(a)$ is a finite extension of F.	6
	b)	Prove that every finite extension K of a field F is algebraic and may be obtained from F by the adjunction of finitely many algebraic elements.	6
	c)	Let $a = \sqrt{2}$, $b = \sqrt[4]{2}$, where R is an extension of Q. Verify that $a + b$ and ab are algebraic of degree atmost (deg a) (deg b).	4
2.	a)	Let $f(x) \in F[x]$ be degree $n \ge 1$. Then prove that there is an extension E of F of degree atmost n! in which $f(x)$ has n-roots.	6
	b)	Define splitting field of a polynomial over a field F. Determine the splitting field of $x^3 - 2$ over the field Q.	4
	c)	If P is a prime number, prove that the splitting field over F, the field of rationals, of the polynomial $x^P - 1$ is of degree P - 1.	6
3.	a)	If the number α satisfies an irreducible polynomial of degree k over the field of rational numbers and k is not a power of 2, then show that α is not a constructible number.	6
	b)	Prove that a polynomial $f(x) \in F[x]$ has a multiple root if and only if $f(x)$ and $f'(x)$ have a non-trivial common factor.	6
	c)	Prove that any finite extension of a field F of characteristic 0 is a simple extension.	4
4.	Sta	ate and prove the fundamental theorem of Galois theory.	16
		P	т.о.

Max. Marks: 80

4

6

4

6

6

4

6

PG - 269

PART-B

- 5. a) Let V be finite-dimensional vector space over F, prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0. 6
 - b) If V is finite-dimensional vector space over F and if T ∈ A(V) is right-invertible, then show that T is invertible.
 - c) If V is a finite-dimensional vector space over F and T, S \in A(V) with S as regular, prove that both T and STS⁻¹ have the same minimal polynomial over F.
- 6. a) Let V be a finite-dimensional vector space over a field F. If $\lambda \in F$ is an eigen value of $T \in A(V)$ and if $f(x) \in F[x]$, prove that $f(\lambda)$ is an eigen value of $f(T) \in A(V)$.
 - b) If V is n-dimensional vector space over F and if $T \in A(V)$ has the matrix $m_1(T)$ in the basis $\{v_1, v_2, ..., v_n\}$ and the matrix $m_2(T)$ in the basis $\{w_1, w_2, ..., w_n\}$ of V(F), then prove that there is a matrix C in F_n such that $m_2(T) = C m_1(T)C^{-1}$.
 - c) If $\lambda_1, \lambda_2, ..., \lambda_k$ in F are distinct characteristic roots of $T \in A(V)$ and if $v_1, v_2, ..., v_k$ are characteristic vectors of T belonging to $\lambda_1, \lambda_2, ..., \lambda_k$, respectively, then prove that $v_1, v_2, ..., v_k$ are linearly independent.
- 7. a) Let V be a finite-dimensional vector space over a field F. If T ∈ A(V) is nilpotent of index r, prove that there exists a vector v in V such that {v, T(v), ..., T^{r 1}(v)} is linearly independent over F.
 - b) If T ∈ A(V) has all its characteristic roots in F, prove that there is a basis of
 V in which the matrix of T is triangular.

- c) Let $T \in A_F(V)$ has all its distinct characteristic roots $\lambda_1, \lambda_2, ..., \lambda_k$ in F. Then show that there is a basis of V in which the matrix of T is of the form
 - $\begin{bmatrix} J_{1} & 0 & \cdots & \cdots & 0\\ 0 & J_{2} & 0 & \cdots & 0\\ \vdots & 0 & \cdots & \cdots & 0\\ \vdots & \vdots & \cdots & \cdots & \cdots & J_{k} \end{bmatrix}, \text{ where } J_{i} = \begin{bmatrix} B_{i1} & 0 & \cdots & 0\\ 0 & B_{i2} & \cdots & 0\\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & B_{ir} \end{bmatrix}_{i}$

where $B_{i1}^{}, B_{i2}^{}, ..., B_{ir_i}^{}$ are basic Jordan blocks belonging to $x_i^{}$.

- 8. a) Let V be a finite-dimensional complex inner product space. If $T \in A(V)$ is such that $\langle T(V); V \rangle = 0$ for each $v \in V$, then prove that T = 0.
 - b) If T is unitary and if λ is a characteristic root of T, then prove that $|\lambda| = 1$. 4
 - c) State and prove Sylvester's law of inertia for real quadratic forms.

6

4

8